Are you a Research Engineer with a passion for Reinforcement Learning and Multimodality? Join Google DeepMind’s Frontier AI Unit! We are seeking a researcher to help us make learning efficient through conversational environments. While text-based reasoning has shown immense promise, we are moving the frontier toward image-grounded, multimodal, and retrieval-augmented conversational setups. You will bridge the gap between conversational learning and the visual domain, applying the latest RL methods to create scalable, semi-verifiable environments that power the next generation of our models (e.g., Gemini).
Google DeepMind: Artificial Intelligence could be one of humanity’s most useful inventions. At Google DeepMind, we’re working together to advance the state of the art in artificial intelligence. We use our technologies for widespread public benefit and scientific discovery, and collaborate with others on critical challenges, ensuring safety and ethics are the highest priority.
Frontier AI Unit: The Frontier AI Unit is responsible for building and scaling the next generation of our core models. Within this group, our team focuses on "conversationality" as a mechanism for efficient learning. We believe that learning conversationally transfers between environments. We are moving beyond Chain-of-Thought (CoT) and text-only setups to build multimodal, multi-turn reasoning capabilities, leveraging an ecosystem of autoraters and autousers to scale environment creation.
We have strong evidence that conversational environments lead to better learning in a transferable way. However, we need to go beyond text. As a Research Engineer, you will play a pivotal role in expanding Meta Reinforcement Learning to multimodal setups. You will help us leapfrog current industry benchmarks by extending our focus from verifiable domains to semi-verifiable, multimodal domains (e.g., Lens, Image-grounded reasoning).
This is an ecosystem play: you will leverage our advantages in autoraters and autousers to scale the creation of these conversational environments. You will be the bridge between the core conversational work and the specifics of grounding in the visual domain, moving our training infra from static data towards dynamic, multi-turn environments.
We are looking for a Research Engineer who is not just technically proficient but deeply curious about the mechanics of learning. You should be up to date with the latest methods in RL and eager to apply them to messy, ambiguous, and high-impact strategic problems. You are comfortable bridging the gap between abstract research and concrete implementation.
Essential Skills:
Useful Skills:
At Google DeepMind, we value diversity of experience, knowledge, backgrounds and perspectives and harness these qualities to create extraordinary impact. We are committed to equal employment opportunity regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, pregnancy, or related condition (including breastfeeding) or any other basis as protected by applicable law. If you have a disability or additional need that requires accommodation, please do not hesitate to let us know.